Axioms in Boolean Algebra
a β§ T = a {β§ identity}
a β¨ F = a {β¨ identity}
a β§ a = a {β§ idempotence}
a β¨ a = a {β¨ idempotence}
a β§ F = F {β§ null} annihilation
a β¨ T = T {β¨ null} absorbtion
a β§ b = b β§ a {β§ commutative}
a β¨ a = b β¨ a {β¨ commutative}
(a β§ b) β§ c = a β§ (b β§ c) {β§ associative}
(a β¨ b) β¨ c = a β¨ (b β¨ c) {β¨ associative}
a β§ (b β¨ c) = (a β§ b) β¨ (a β§ c) {β§ distributes over β¨}
a β¨ (b β§ c) = (a β¨ b) β§ (a β¨ c) {β¨ distributes over β§}
Β¬(a β§ b) = Β¬a β¨ Β¬b {DeMorgan's law}
Β¬(a β¨ b) = Β¬a β§ Β¬b {DeMorgan's law}
Β¬T = F {negate T}
Β¬F = T {negate F}
Β¬(Β¬a) = a {double negation}
a β§ Β¬a = F {β§ complement} NCL
a β¨ Β¬a = T {β¨ complement} LEM
a β a β¨ b {β¨ implication} weakening
a β§ b β a {β§ implication} β§El
a β§ b β b {β§ implication} β§Er
β β‘ β β‘ β¨
a β b β‘ Β¬b β Β¬a β‘ Β¬a β¨ b {implication}
Β¬a β b β‘ Β¬b β a β‘ a β¨ b
a β Β¬b β‘ b β Β¬a β‘ Β¬a β¨ Β¬b
Β¬a β Β¬b β‘ b β a β‘ a β¨ Β¬b
a β b β‘ Β¬a β¨ b {implication}
a β b β‘ Β¬b β Β¬a {contrapositive}
a β§ (a β b) β b {Modus Ponens} a, a β b β’ b
(a β b) β§ Β¬b β Β¬a {Modus Tollens} a β b, Β¬b β’ Β¬a
(a β¨ b) β§ Β¬a β b {β¨ syllogism} (a β¨ b), Β¬a β’ b
(a β b) β§ (b β c) β a β c {β chain} transitivity
(a β b) β§ (c β d) β (a β§ c) β (b β§ d) {β combination}
(a β§ b) β c β‘ a β (b β c) {Currying}
(a β b) β§ (a β Β¬b) β‘ Β¬a {absurdity}
a β b β‘ (a β b) β§ (b β a) {equivalence}Last updated