🗄️
math-debrief
  • Math Debrief
  • Math: TIMELINE
  • 100-fundamentals
    • debrief-name: math section-code: 000 section-name: general section-desc: Elementary topics pervasive
      • About Mathematics
      • abstraction-in-math
      • About Math
      • Axiom schema
      • Basic concepts in math
      • Collections
      • Elementary concepts in objects
      • Elements of mathematics
      • math-as-a-language
      • Mathematical structures
      • List of mathematics-based methods
      • Mathematics and Reality
      • Mathematics: General
      • Controversial mathematics
      • the-elements-of-math
      • What is mathematics
    • The foundation of mathematics
      • Mathematical foundations
      • Foundations of Mathematics
      • Axiomatization of mathematics
      • Foundational crisis of mathematics
      • Foundations
      • Hilbert's problems
      • impl-of-math-in-set-theory
      • Gödel's Incompleteness Theorem
      • Theorems in the foundations of mathematics
      • The list of FOM candidates
      • Logicism
    • Philosophy of mathematics
      • Constructive mathematics
      • Constructive mathematics
      • Metamathematics
      • Philosophy of mathematics
      • Schools of mathematics
    • terms
      • Terms
      • Arithmetic
      • Axiom
      • The Axiomatic Method
      • discrete-math
      • 201 Discrete mathematics
      • Euclidean space
      • Formal system
      • Function
      • Generalization
      • Geometry
      • Higher-order
      • Impredicativity
      • Level of measurement
      • Mathematical definition
      • FAQ
      • Mathematical function
      • Mathematical induction
      • Mathematical object
      • Mathematical object
      • Equivalent definitions of mathematical structures
      • Mathematics
      • Mathematical model
      • mathematical-notation
      • Mathematical pages
      • Mathematical terminology
      • Mathematical adjective
      • Numbers
      • plane
      • Primer: Set Theory
      • Mathematical primitive
      • Set
      • Space
      • theory
      • Variable
  • 200 Set and Set theory
    • Sets: Hierarchy
    • set.TERMS
    • SETS › TOPICS
    • 201 Set concepts
      • Mathematical collections
      • The notion of sets
      • Specification of sets
    • Set cardinality
      • Cardinality of the continuum
      • Cardinality
      • Set Cardinality
      • cardinality2
      • Set cardinality
    • Set operations
      • Disjoint sets
      • Overlapping sets
      • Product
      • set-interactions
      • Set qualities
      • Set relations
    • Set properties
      • Basic set properties
      • Set properties
    • Set relations
      • Basic set relations
      • Disjoint sets
      • Inclusion relation
      • Membership Relation
      • Set membership
    • Summary
      • Set FAQ
      • Sets: Summary
    • Set theories
      • Axiomatic set theory
      • Set Theories
      • Naive Set Theory
      • Morse-Kelley set theory
      • von Neumann-Bernays-Gödel Set Theory
      • Quine's New Foundations (NF)
      • Cantor's set theory
      • Zermelo-Fraenkel set theory
    • Axioms of set theory
      • axiom-of-choice
      • The Axiom of Extensionality
      • Axiom of infinity
      • axiom-of-pairing
      • Axiom of powerset
      • Axiom of Regularity
      • Axiom of replacement
      • Axiom of union
      • Axiom of well-ordering
      • axiom-schema-of-comprehension
      • Axiom Schema of Specification
      • Axioms of set theories
      • List of axioms in set theory
      • ZFC Axioms
    • Sets: Terms
      • Bell Number
      • Cardinal number
      • Class (set theory)
      • Closure
      • empty-set
      • Extended set operations
      • Extensions by definitions
      • Family of sets
      • Fundamental sets
      • fundamental-sets2
      • Georg Cantor
      • History of set theory
      • Implementation of mathematics in set theory
      • Indexed family of sets
      • Extensional and intensional definitions
      • Involution
      • list-of-axioms-of-set-theory
      • Implementation of mathematics in set theory
      • Set membership
      • Naive Set Theory
      • Number of relations
      • empty-relation
      • Set Partitioning
      • Powerset
      • Russell's paradox
      • Set-builder notation
      • Set equivalence
      • Set Notation in latex
      • Set notation
      • Set partition
      • Intensional and extensional set specification
      • Set notation
      • Basic concepts in set theory
      • set-theory
      • Set Types
      • set
      • subset
      • Transfinite number
      • Tuples
      • ur-elements
  • Relations
    • basic-concepts
      • algebraic-axioms
      • Elements of a relation
      • Types of Relations
      • Named Relations
      • Relation theory
      • Relations
      • Types of relations
    • Relations
      • Definitions
      • Reflexivity
      • Symmetry
      • Transitivity
    • relation-properties
      • Uniqueness properties of relations
    • Types of relations
      • Transitivity
      • Binary Relation
      • Congruence relation
      • Connex relation
      • axioms-sets-zfc
      • Endorelation
      • Equivalence relation
      • Euclidean
      • Finitary relation
      • Heterogeneous relation
      • Homogeneous relation
      • Transitivity
      • Partial equivalence relation
      • Transitivity
      • Transitivity
      • Reflexive relation
      • Reflexivity
      • Index of relations
      • Serial relation
      • Symmetry
      • Transitivity
      • Ternary relation
      • Trichotomy
      • Universal relation
      • Well-foundedness
    • terms
      • Relations
      • Binary relation
      • Relations
      • _finitary-rel
      • Relations: Overview
      • Relations
      • Index of relations
      • Binary relations
      • Composition of relations
      • Equivalence class
      • Notation
      • Relation
      • Relations
      • Sets: Summary
      • Aggregation: Sets, Relations, Functions
  • Order theory
    • Order theory
    • List of order structures in mathematics
    • List of order theory topics
    • Order theory
      • Hasse diagram
      • Order theory
      • ordered-set
      • Partial order
      • Partially ordered set
      • Total order
  • Function Theory
    • Function Theory: GLOSSARY
    • Function Theory: HIERARCHY
    • Function Theory: LINKS
    • Function Theory: TERMS
    • Function Theory: TOPIC
    • Function Theory: WIKI
    • _articles
      • about-functions
      • Function
      • Formal definition
      • Definition
      • constant
      • Introduction
      • Types of functions
      • Functions: Summary of Notations
      • Functions: Overview
      • Properties of functions
      • Function properties
      • Functions: Summary
      • Function
    • Abjections
      • Bijective function
      • Function (abjections)
      • Injective function
      • Surjective function
    • topics
      • Function: TERMS
      • Codomain
      • Composition of functions
      • Currying
      • Division of functions
      • Domain
      • Function fixed points
      • Function cardinality
      • Function definition
      • Elements of a function
      • Function in mathematics
      • Function notion
      • Function operations
      • Function properties
      • Functional statements
      • Functions in programing languages
      • Image and Preimage
      • Image
      • Inverse function
      • Notion of functions
      • Number and types of functions between two sets
      • Operation
      • Range
      • Successor function
      • Time complexity classes
  • debrief-name: math section-code: 280 section-name: domain-theory section-desc:
    • Domain theory: LINKS
    • Domain theory
  • Logic
    • Logic: CHRONO TERMS
    • Logic: CLUSTERS
    • lo.GLOSSARY
    • Logic: Wiki links
    • 305-basic-concepts
      • Introduction to Logic
      • Argumentation
      • Logic: Basic terminology
      • Logic: Terminology
      • Truth function
      • Truth function
    • README
      • Mathematical Logic
      • Types of Logic
      • BHK interpretation
      • FOL
      • Index of Logic Forms
      • History of logic
      • Logic Indices
      • Interpretation of symbols in logic and math
      • logic-systems
      • Mathematical Logic: People and Events
      • Index of logical fallacies
      • Logical symbols
      • Mathematical conjecture
      • Mathematical induction
      • Mathematical lemma
      • Mathematical Logic
      • Mathematical proof
      • Mathematical theorem
      • Mathematical theory
      • Monotonicity of entailment
      • Satisfiability Modulo Theories
      • Sequent Calculus
      • Sequent
      • Tableaux
      • Truth tables
    • 360-propositional-logic
      • Propositional Logic
      • Propositional Logic
    • 370-predicate-logic
      • Predicate Logic
      • First-order logic
      • Predicate calculus
      • Examples of predicate formulae
    • 380-proof-theory
      • Argument-deduction-proof distinctions
      • Direct proof
      • Mathematical induction
      • Mathematical induction
      • Mathematical proof
      • Natural deduction
      • Natural deduction
      • Proof by induction
      • Proof by induction
      • proof-calculus
      • Proof Theory
      • Structural induction
      • System L
      • Proof theory
    • Logic: Indices
      • Gödel's Incompleteness Theorem
      • The History of Mathematical Logic
      • forallx
      • Logic for CS
      • Lectures in Logic and Set Theory
      • _logicomix
    • Logic
      • Logical connectives
      • Logical equivalence
    • Rules of Inference
      • WIKI
      • Conjunction elimination
      • Conjunction introduction
      • Cut rule
      • Disjunction elimination
      • Disjunction introduction
      • Disjunctive syllogism
      • Exportation
      • implication-elimination
      • implication-introduction
      • Rules of Inference: Index
      • Rules of inference
      • Rules of Inference for Natural Deduction
      • Logical Inference
      • Reiteration
      • Rule of inference
      • Structural rules
      • substitution
    • Logic
      • The principle of bivalence
      • The principle of explosion
      • The Law of Identity (ID)
      • Laws of thought
      • Properties of logic systems
      • List of laws in logic
      • The law of non-contradiction
    • Logic
      • Logic systems: LINKS
      • Logic system
      • logic-systems
      • logic-typ
      • logics-by-purpose
      • _logics
      • Affine logic
      • Algebraic logic
      • Bunched logic
      • Classical logic
      • Traditional first-order logic
      • Hoare logic
      • Linear logic
      • Modal logic
      • Non-monotonic logic
      • Syntax
      • Predicate logic
      • Propositional Logic
      • Relevance logic
      • Separation logic
      • Substructural logics
      • Syllogistic logic
    • Logic: Sections: Elementary
    • Logic: Topics
      • Pages in Logic
      • Logic ❱ Terms ❱ List
      • Logic ❱ Terms ❱ Definitions
      • Absoluteness
      • Assumption
      • Automated theorem proving
      • Canonical normal form
      • Categorical proposition
      • Classical linear logic
      • Consequence
      • Decidability
      • Deduction systems
      • deduction-theorem
      • Deductive reasoning
      • Diagonal lemma
      • Fallacy
      • Fitch notation
      • Formal language
      • formal-system
      • Formalism
      • Formula
      • functionally complete
      • Hilbert system
      • Hoare logic
      • horn-clause
      • Mathematical induction
      • Induction
      • Inductive Reasoning
      • Intuitionistic logic
      • Intuitionistic logic
      • Intuitionistic logic
      • Judgement
      • Judgments
      • Linear logic
      • Logic in computer science
      • Logic
      • Logical connective
      • Logical consequence
      • Logical constant
      • Logical form
      • axioms-sets
      • Logical reasoning
      • Ludics
      • Non-logical symbol
      • Predicate
      • Premise
      • Quantification
      • Realizability
      • Boolean satisfiability problem
      • DPLL algorithm
      • Satisfiability
      • Semantics of logic
      • Skolemization
      • SAT and SMT
      • Syntax
      • Tautology
      • Term
      • Unification
      • Validity
  • 510 Lambda Calculi
    • Lambda Calculus: GLOSSARY
    • Lambda calculi: LINKS
    • Lambda Calculus: OUTLINE
    • Lambda Calculus: Basic concepts
      • Introduction
      • Lambda expressions
      • Free variables
    • Lambda Calculi
      • Lambda calculus: LINKS
      • Lambda calculus combinators in Haskell
      • Lambda calculus: Combinators
      • Combinators
      • combos-all.js
      • combos-bird.js
      • combos-birds-list.js
      • combos-birds.js
      • Fixed-point combinator
      • Fixpoint operator
      • Lambda calculus: Fixpoint
    • combinatory-logic
      • algebraic-structures
      • Combinatory logic
      • Combinatory logic
      • relation-classification
      • 04-definition
    • Lambda calculus encoding schemes
      • bohm-berarducci-encoding
      • Index of Church encodings
      • Church encodings
      • Church Numerals
      • Encoding data structures
      • Encoding schemes in lambda calculi
      • Lambda encoding
      • Mogensen-Scott encoding
      • Parigot encoding
      • encodings
        • Encoding data structures
        • Encoding of Data Types in the λ-calculus
        • church-booleans
        • Church data structures
        • Church encoding
        • Church Numerals: Church encoding of natural numbers
        • Lambda Calculus: Church encoding
        • Lambda Calculus: Church encoding
        • church-numerals
        • Lambda Calculus: Church encoding: Numerals
        • Church pair
        • Pair
        • Lambda Calculus: Church encoding
        • Alternative encodings
        • Encoding schemes
        • Encoding schemes
        • Encodings in Untyped Lambda Calculus
        • Lambda calculus
        • Scott encoding
        • Lambda calculus: Scott encoding
    • lambda-calculus-evaluation
      • Call-by-name
      • Call-by-need
      • Call-by-value
    • lambda-calculus-forms
      • Beta normal form
      • Lambda terms
      • Fixity of lambda-terms
    • lambda-calculus-reductions
      • Alpha conversion
      • Beta reduction
      • Delta reduction
      • Eta conversion
      • Eta conversion
      • Lambda calculus: η-conversion
    • lambda-calculus
      • Alonzo Church
      • Inference rules for lambda calculus
      • Lambda Calculus: Introduction
      • Lambda abstraction
      • Lambda application
      • Lambda Calculus: Definition
      • About λ-calculus
      • Type inference
      • Lambda Calculus
      • Lambda Calculus: Introduction
      • Introduction to λ-calculus
      • Lambda calculus
      • Definition of Lambda Calculus
      • Functions in lambda calculus
      • History of Lambda Calculus
      • Using the Lambda Calculus
      • Name capturing
      • Variable occurrences
      • Variables
    • Lambda Calculus
      • Church-Rosser theorem
      • Curry's paradox
      • De Bruijn index
      • de Bruijn notation
      • Deductive lambda calculus
      • Kleene-Rosser paradox
      • Aspects of the lambda calculus
      • Function Refactoring
      • Lambda lifting
      • Let expression
      • Reduction strategy
      • Substitution
    • typed-lambda-calculi
      • Lambda Cube
      • Simply typed lambda calculus
      • System F
      • Typed lambda calculi
  • Type theory
    • Type Theory: GLOSSARY
    • Type theorists
    • Type Theory: SUMMARY
    • TERMS: Type Theory
      • Types
      • History of type theory
      • History of Type Theory
    • curry-howard-correspondence
      • The Curry-Howard Correspondence in Haskell
      • Curry-Howard correspondence
      • Curry-Howard correspondence
      • Curry-Howard correspondence
      • Curry-Howard-Lambek correspondence - HaskellWiki
    • dependent-types
      • Dependent type
      • Dependent type
    • Hindley-Milner type-system
      • Hindley-Milner type system
      • Monomorphism vs polymorphism
      • Let-polymorphism
      • The Hindley-Milner type system
      • Algorithm W in Haskell
      • Hindley-Milner Type Inference: W Algorithm
      • hindley–milner-type-system
      • Hindley-Milner type system
      • HM inference examples
      • HM in ML
      • Type Inference
    • Homotopy type theory
      • Homotopy type theory
      • Univalent Type theory as the foundations of mathematics
    • Intuitionistic type theory
      • Inductive definition
      • Inductive type
      • Intuitionistic type theory
    • Type Theory
      • TTTools
      • Coinduction
      • Impredicativity
      • Lean
      • Subsumption
    • Type Theory : Topics
      • Type Theory : Terms
      • Recursion types
      • Recursive data type
      • Subtyping
      • Type Class
      • Type Equivalence
      • Type Inference
      • Type rule
      • Type system
      • Variance
    • type-theories
      • Calculus of Constructions
      • Constructive type theory
      • ramified-type-theory
      • simple-type-theory
      • Substructural type systems
    • type-theory-general
      • Linear types
      • History of Type Theory
      • Type Theory
      • Overview
      • Type Theory
  • Abstract Algebra
    • 410-group-theory
      • Abelian group
    • algebras
      • Associative Algebra
      • Field
      • Group-like algebraic structures
      • group
      • Lattice
      • Magma
      • monoid
      • Overview of Algebras
      • Quasigroup
      • Rack and quandle
      • Ring
      • Semigroup
      • Algebra of sets
      • Setoid
    • boolean-algebra
      • Boolean algebra
      • Axioms in Boolean Algebra
      • Boolean algebra
      • Boolean Algebra Laws
      • Boolean Algebra Laws
      • Two-element Boolean algebra
      • Boolean algebra
      • Boolean domain
    • terms
      • Algebra
      • Axioms of abstract algebra
      • Algebraic notation for algebraic data types
      • Algebraic structure
      • Algebraic structure
      • Field of sets
      • Homomorphism
      • Isomorphism
      • Algebraic structures
      • Mathematical structure
      • Polynomials
      • Relation algebra
  • Category Theory
    • CT GLOSSARY
    • Category Theory: OUTLINE
    • CT SUMMARY
    • A First Introduction to Categories (2009)
      • Sets, maps, composition
      • 02-history
      • axioms-logic
      • Bijection of functions
      • Commutative diagram
      • Directed graph
      • CT prerequisites
      • String diagram
      • Transitive closure
    • Category Theory Fundamentals
      • Introduction
      • Interpretation
      • Fundamental concepts
      • Category theory
      • Category
      • Category Theory: Definitions
    • Key concepts
      • Duality
      • Functor
      • Homeset
      • Initial Object
      • Morphism
      • Natural transformation
      • Object
      • Terminal Object
    • Categorical constructions
      • Categorical constructions
      • Coproduct
      • Diagram
      • Product
      • Universal construction
    • Types of categories
      • Concrete category
      • Discrete category
      • Functor category
      • Groupoid
      • Hask
      • Kleisli category
      • Locally small category
      • Monoid
      • monoidal-categories.md
      • Index of named categories
      • Opposite category
      • Ordered category
      • Set category
      • Small category
      • Subcategory
    • Types of Functors
      • Adjoint functor
      • relation-arity
      • Endofunctor
      • Faithful functor
      • Forgetful functor
      • Hom functor
      • Identity functor
      • Inverse functor
      • Monad
      • Powerset functor
    • Types of Morphisms
      • Anamorphism
      • Automorphism
      • Catamorphism
      • Endomorphism
      • Epimorphism
      • Homomorphism
      • Hylomorphism
      • Idempotent morphism
      • Identity morphism
      • Inverse morphism
      • Isomorphism
      • Metamorphism
      • monomorphism
      • Natural isomorphism
      • Split morphism
    • 20-advanced-concepts
      • Coalgebra
      • (Co)Inductive types
      • Recursion Schemes
    • Category Theory
      • Category Theory: TERMS
      • Algebraic Data Types
      • Category Theory
      • Category
      • Coproduct
      • Function type
      • Functoriality
      • Initial Object
      • Limits and Colimits
      • Natural Transformation
      • 5. Products
      • Terminal Object
    • Category Theory :: Contents
      • CT :: Links
      • Category Theory :: Terms
      • Category :: Definition
      • F-Algebra
      • Functor
      • Initial object
      • Monoid
      • Natural Transformation
      • Number of morphisms
      • Terminal object
      • Transitive closure
      • Types of morphisms
      • Categories by cardinality
      • Types of functors
  • Number Theory
    • Invariance and Monovariance Principle
    • 615-arithmetic
      • Addition
      • Aliquot sum
      • Arithmetic function
      • Laws
      • Arithmetic operations
      • Index of arithmetic operations
      • Arithmetic operations
      • Arithmetic
      • Divisibility rules
      • Divisibility
      • division
      • Divisor Function
      • Divisor Summatory Function
      • Divisor
      • Euclidean division
      • Hyperoperations
      • hyperops
      • Modular arithmetic
      • Multiplication
      • Number Theory: primer in numbers
      • Percentage
      • Rules of Divisibility
      • Subtraction
    • The fundamental sets of numbers
      • Algebraic numbers
      • Complex numbers
      • Fractions
      • Fundamental number sets
      • Imaginary numbers
      • Integers
      • Irrational numbers
      • Natural number
      • Rational numbers
      • Real numbers
      • Transcendental numbers
      • Ulam's spiral
      • The whole numbers
    • COUNTING THEORY
      • Counting Theory
      • counting
      • Fundamental Counting Rules
    • 630-combinatorics
      • Combinatorics
      • Combinations
      • Combinatorics
      • Counting theory
      • Counting theory
      • Enumerative combinatorics
      • Partition
      • Pascals triangle
      • Permutations
      • Twelvefold way
    • Probability theory
      • Statistics › Probability theory: Glossary
      • Statistics › Probability theory › Topics
      • Statistics › Probability theory › Wiki Links
      • Conditional Probability
      • Distribution
      • Probability theory
      • Probability
    • Number theory
      • euclids-lemma
      • gcd-lcm
      • Induction
      • Infinity
      • Numbers and numerals with interesting properties
      • Lagrange's four-square theorem
      • Matrix
      • Matrix
      • List of Number Systems
      • Number Theory
      • Number Theory with Glenn Olsen
      • Number
      • Arithmetic
      • Numbers
      • numeral-prefixes
      • Numeral system
      • Numeral
      • Ordinal numbers
      • Parity
      • Peano axioms
      • Polynomial
      • Polynomial
      • Positional notation
      • Probability
      • Symbol
      • Well Ordering Principle
    • topics
      • Coprimality
      • Facorization of composite numbers
      • Fundamental Theorem of Arithmetic
      • Prime factorisation
      • Prime number
      • Prime numbers
  • Theory of computation
    • Theory of computation: Abbreviations
    • Theory of computation: CHRONOLOGICAL TOPICS
    • Theory of computation: GLOSSARY
    • Theory of Computation: HIERARCHY
    • Theory of computation: LINKS
    • Theory of computation: TERMS
    • Theory of computation: TOPICS
    • Theory of computation: WIKI
    • Theory of Computation
      • _toc-more
      • Theory of Computation
    • 610-automata-theory
      • Abstract machine
      • Automata Theory
      • Automaton
      • Edit distance
      • Finite-state Machine
      • Automata Theory: WIKI
    • Formal systems
      • Abstract interpretation
      • Alphabet
      • Binary combinatory logic
      • Chomsky hierarchy
      • Epsilon calculus
      • Formal language
      • Iota and Jot
      • Regular expression
      • Regular Language
      • SKI combinator calculus
    • 621-grammar
      • Backus-Naur Form (BNF)
      • Context-free grammar
      • Context-sensitive grammar
      • Extended Backus–Naur Form (EBNF)
      • Regular Language
      • Terminal and nonterminal symbols
    • 622-syntax
      • Syntax
    • 624-semantics
      • Axiomatic semantics
      • Denotational Semantics: Summary
      • Denotational Semantics
      • Denotational Semantics
      • Denotational semantics
      • Formal semantics
      • Operational semantics
      • Semantics in CS
      • Semantics
    • 630-computability-theory
      • Computability (recursion) theory: TERMS
      • Computability (recursion) theory: TOPICS
      • Effective Computability
      • Church Thesis
      • Church-Turing Thesis
      • Computability theory
      • Computability
      • Computable function
      • Entscheidungsproblem
      • Halting problem
      • Machine that always halts
      • McCarthy Formalism
      • Super-recursive algorithm
      • Recursion theory
    • 632-recursive-function-theory
      • Recursion Theory
      • Ackermann function
      • General recursive function
      • Minimization operator
      • Partial functions
      • Recursion Function Theory
      • Sudan function
    • 634-primitive-recursive-functions
      • Primitive Recursive Function
      • Initial functions
      • The list of primitive recursive functions
      • Primitive combination
      • Primitive composition
      • Primitive recursion
      • Successor function
    • 640-models-of-computation
      • Models of computation: Summaries
      • Model of computation
    • 680-complexity-theory
      • Algorithmic Complexity
      • Complexity Theory
  • debrief-name: math section-code: 900 section-name: aggregations section-desc: Aggregations, indices,
    • Index of closures
    • List of mathematical entities
    • List of mathematical objects
    • Enumeration of mathematical structures
    • Math : Axioms as Formulae
    • 950-math-areas
      • Areas of mathematics
      • Areas of mathematics
    • 970-links
      • check
      • Math: Links
      • Math Debrief: Links
      • Math Primer: LINKS
      • Links
      • Math: LINKS: ncatlab
      • Math: LINKS
      • WIKI
      • WIKI
      • WIKI_ALL
      • Math: Wiki lists
      • Glossary of areas of mathematics
      • WIKI_collections
      • Mathematics for Computer Science
      • Mathematics Classification
      • math
      • Resources
      • Math on YouTubel Video Playlists
      • wiki resources
    • 980-hierarchy
      • HIERAR
      • Math: Hierarchy
      • Math HIERARCHY
      • classification
        • Mathematics
        • https://ncatlab.org/nlab/all_pages https://ncatlab.org/nlab/all_pages/reference https://ncatlab.org/
        • Math Classification and Topical Pages
        • Areas of mathematics
        • Areas of mathematics
        • Math Classification: CCS
        • Math hierarchy
        • Computational mathematics
        • Taxonomy: Mathematics
        • Areas of mathematics
        • Mathematics Subject Classification
        • Math fields
        • math-topics
        • Mathematics Subject Classification – MSC
        • MSC Classification Codes
        • mss-top-levels-filenames
        • MSC classification: Top Levels
        • Math classification
    • 990-appendix
      • Math glossary at ENCYCLOPÆDIA BRITANNICA
      • Bibliography
      • Math: Abbreviations
      • math.GLOSSARY
    • Math : Canon
      • Main branches of mathematics
      • Enumeration: Math paradigms
      • enum-math-symbols
      • List of mathematical theories
      • enum-algebras
        • Group-like algebraic structures
        • Group
        • Groupoid
        • magma
        • Monoid
        • Semigroup
      • enum-axioms-indices
        • 03-variants
        • axioms-relations
        • disjoint-sets
        • ordered-pair
      • enum-axioms
        • Axiom of Extensionality
        • Axioms
          • List of Axioms
          • List of Axioms
          • LINKS
          • Index of axioms
          • Index of axioms
          • List of Axioms
          • List of Axioms in Relations
          • _laws
          • Index of axioms
          • Index of properties
          • Axioms in Boolean Algebra
          • Axioms for the Real Numbers and Integers
          • Axioms for the Real Numbers and Integers
          • ZF Axioms
          • ZFC Axioms
          • Axioms in logic
          • Axioms in set theory
          • List of axioms in set theory
        • Axioms
          • Absorption
          • Annihilation
          • Associativity
          • Cancellation
          • Closure
          • Commutativity
          • Complement laws
          • Distributivity
          • Domination
          • Idempotency
          • identity
          • Invertibility
          • involution
          • Linearity
          • Monotonicity
          • Well-definedness
          • Well-formedness
          • Well-foundedness
          • Well-ordering
      • enum-inference-rules
        • Enumeration: Rules of Inference
        • Enumeration: Rules of Inference for Intuitionistic Natural Deduction
      • Math › Logic formulae
        • Logic formulas concerning functions
        • Logic formulas concerning orders
        • Logic formulas concerning relations
        • Logic formulas concerning sets
      • enum-logic-system-elements
        • Conjecture
      • enum-logic-system-properties
        • Completeness
        • Consistency
        • Decidability
      • enum-topical-hierarchies
        • Outline of category theory
    • Mathematical Lists and Indices
      • Index of algebraic structures
      • Math equations and formulas
      • The fundamental number sets
      • index-of-math-elements
      • Arity
      • List of binary relations
      • Pretty formulae
      • Index of integer sequences
      • List of conjectures
      • Mathematical objects
      • Theorems
      • List of mathematical theories
      • list-of-unsolved-problems
      • Lists of problems in math
      • People
      • list-of-quotes-and-phrases
    • Mathematical elements
      • Mathematical (elements): PAGES
      • Mathematical abstraction
      • Mathematical analysis
      • Mathematical argumentation
      • Mathematical axiom
      • Mathematical concept
      • Mathematical constant
      • Mathematical deduction
      • Mathematical definition
      • Mathematical element
      • Mathematical expression
      • Mathematical formula
      • Mathematical method
      • Mathematical model
      • Mathematical notation
      • Mathematical object
      • Mathematical primitive
      • Mathematical reasoning
      • Mathematical statement
      • Mathematical structure
      • Mathematical symbol
      • Mathematical synthesis
  • debrief-name: math section-code: 800 section-name: misc section-desc: Misc and unclassified mathemat
    • 810-statistics
      • STATISTICS: HIERARCHY
      • STATISTICS: TERMS
      • Statistics › Topics
      • Statistics WIKI LINKS
      • Mathematical Concepts
      • Linear Regression
    • 888-calculus
      • Calculus
      • Math › Calculus › TERMS
Powered by GitBook
On this page
  • Complexity theory
  • Automata theory
  • Computability theory
  • Theory of Computation

Was this helpful?

  1. Theory of computation
  2. Theory of Computation

_toc-more

PreviousTheory of ComputationNextTheory of Computation

Last updated 3 years ago

Was this helpful?

Complexity theory

Concerns:

  • Computationally hard and easy problems, P vs NP. Is P = NP?

  • Classifying problems according to their complexity

  • Rigorous proof that a NP problem is NP indeed

Automata theory

The central questions of automata theory:

  • Whether different models have the same power?

  • Can a certain model solve more problems than the other?

Automata theory deals with definitions and properties of different types of computation models including:

  • Finite Automata: used in text processing, compilers, hardware design.

  • Context-Free Grammars: used to define programming languages. Also in AI.

  • Turing Machines: form a simple abstract model of a computer.

Computability theory

The central questions of computability theory:

  • Classifying problems as solvable or unsolvable.

  • Whether an arbitrary mathematical statement is true or false.

In the 30's, it was discovered by Godel, Turing, Church that some of the fundamental problems in mathematics cannot be solved by a "computer" (even though computers crossed from theory into practice only in the 40's).

An example of such a problem is answering whether an arbitrary mathematical statement is true or false. To tackle such a problem, formal definitions of the notions of computer, algorithm and computation were needed. The theoretical models that were proposed in order to understand solvable and unsolvable problems led to the development of computers.


Theory of Computation

The theory of computation is a branch of computer science and mathematics combined that "deals with how efficiently problems can be solved on a model of computation, using an algorithm".

It studies the general properties of computation which in turn, helps us increase the efficiency at which computers solve problems. This is done when we estimate the validity of the solutions given by the computer through the

theory of computation and then alternate the algorithms so that we can obtain a more reliable solution.

This is a fast-growing branch that has helped solving problems in many fields beside computer science such as Physics, Economy, Biology and many others.

Before introducing you to the basics of the theory of computation, I would like to talk about the Turing machine, as it plays a good role in explaining this theory:

It is theoretical abstract machine used as a model of computation . It uses an infinite memory tape where the information obtained are saved, and analyze these information to determine whether the operation is feasible or not.

This machine was the creation of Alan Turing in 1963 by, he used it to prove properties of computation in general and answer these questions :

  • "Does a machine exist that can determine whether any arbitrary machine on its tape is "circular""

  • "Does a machine exist that can determine whether any arbitrary machine on its tape ever prints a given symbol"

Back to the computational theory,This theory is approached through three main fields:

1- Automata theory 2- Computability theory 3- Computational complexity theory

These three branches basically uses algorithms to exploit the powers of computers in solving problems.

Here is an illustration of these fields :

Automata theory:

This branch was established in the 20th century by mathematicians. The main aim in this branch is to analyze the behavior of machines and how they solve a problem.The most powerful model of automata is the Turing machine.

Computability theory:

It is when we are able to formulate the problem using the Turing machine easily, but we can never solve it.. In other words, It is when the computer is able to address the problem but unable to come up with the solution

Computational complexity theory:

The complexity theory discusses the efficiency at which a problem could be solved. This is done considering two major aspects: time complexity and space complexity, which are the measurees of the number of steps needed to

analyze and solve the problem and thus determining the memory space needed to solve the problem.

In order to pre-determine the space and time that will be needed,computer scientists linked these two factors to the amount of input that was recieved, as the time and space needed increase linearly as the amount of input

increases.

References:

https://en.wikipedia.org/wiki/Theory_of_computationtoc.csail.mit.edu/about

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

https://en.wikipedia.org/wiki/Turing_machine

https://en.wikipedia.org/wiki/Turing_machine

Questions:

-Is there anything that modern computer science can add to this theory to increase its efficiency?

-Will we be in need for this theory in the future with the rise of more complex methods of solving problem with the development of AI and the formation of other theories ?

  • How much has this theory contributed to improving our lives in the modern time ?

Revised Essay: The theory of computation is a branch of computer science and mathematics combined that "deals with how efficiently problems can be solved on a model of computation, using an algorithm". It studies the general properties of computation which in turn, helps us increase the efficiency at which computers solve problems. This is done when we estimate the validity of the solutions given by the computer through the theory of computation and then alternate the algorithms so that we can obtain a more reliable solution. This is a fast-growing branch of Computer Science that has helped solving problems in many fields beside computer science such as Physics, Economy, Biology and many others.

Before introducing you to the basics of the theory of computation, I would like to talk about the Turing machine, as it plays a good role in explaining this theory: It is theoretical abstract machine used as a model of computation . It uses an infinite memory tape where the information obtained is saved, and then analyze to determine whether the operation is feasible or not. This machine was the creation of Alan Turing in 1963, and he used it to prove properties of computation in general and answer these questions :

  • "Does a machine exist that can determine whether any arbitrary machine on its tape is "circular""?

  • "Does a machine exist that can determine whether any arbitrary machine on its tape ever prints a given symbol"?

Back to the computational theory, this theory is approached through three main fields: 1- Automata theory 2- Computability theory 3- Computational complexity theory These three branches basically uses algorithms to exploit the powers of computers in solving problems. Here is an illustration of these fields :

Automata theory: This branch was established in the 20th century by mathematicians. The main aim in this branch is to analyze the behavior of machines and how they solve a problem. The most powerful model of automata is the Turing machine. Computability theory: It is when we are able to formulate the problem using the Turing machine easily, but we can never solve it.. In other words, It is when the computer is able to address the problem but unable to come up with the solution Computational complexity theory: The complexity theory discusses the efficiency at which a problem could be solved. This is done considering two major aspects: time complexity and space complexity, which are the measure of the number of steps needed to analyze and solve the problem and thus determining the memory space needed to solve the problem. In order to pre-determine the space and time that will be needed, computer scientists linked these two factors to the amount of input that was received, as the time and space needed increase linearly as the amount of input increases.

References: https://en.wikipedia.org/wiki/Theory_of_computation https://en.wikipedia.org/wiki/Turing_machine

toc.csail.mit.edu/about

https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

Questions:

  • Is there anything that modern computer science can add to this theory to increase its efficiency?

  • Will we be in need for this theory in the future with the rise of more complex methods of solving problem with the development of AI and the formation of other theories?

  • How much has this theory contributed to improving our lives in the modern time?

Complexity theory
Automata theory
Computability theory
Theory of Computation