Primer: Set Theory

https://en.wikipedia.org/wiki/Implementation_of_mathematics_in_set_theory

  • [primitive] A set is a collection of objects

  • set builder notation: { βˆ€x | Ξ¦(x) }

  • the empty set, βˆ… ≝ { βˆ€x | x β‰  x }

  • singleton set, {x} ≝ { βˆ€y | y = x }

  • unordered pair, {x,y} ≝ { βˆ€z | z = x ⋁ z = y }

  • union, x βˆͺ y ≝ { βˆ€z | z ∈ x ⋁ z ∈ y}

  • ordered pair

    • K.Kuratowski: (x,y) ≝ { {x}, {x,y} }

    • N.Wiener: (x,y) ≝ { {{x},βˆ…}, {{y}} }

  • recursive definition of unordered n-tuples for any concrete n

    (finite sets given as lists of their elements):

    {x₁, …, xβ‚™, xₙ﹒₁} ≝ {x₁, …, xβ‚™} βˆͺ {xₙ﹒₁}

  • βˆ€x. Ξ¨(x) β†’ Ξ¦(x) where, e.g., Ξ¨(x) ~ x ∈ β„• and Ξ¦(x) ~ x >= 0

  • βˆƒx. Ξ¨(x) ∧ Ξ¦(x)

  • Russell's paradox: { x | x βˆ‰ x }

  • the empty set

    • {} or βˆ…

    • βˆ… ≝ { βˆ€x | x β‰  x }

    • E = { βˆ€x | x βˆ‰ E } = { Β¬βˆƒx.x ∈ E }

  • singleton set

    • For each object x, there is a set {x} with x as its only element

    • {x} ≝ { βˆ€y | y = x }

  • unordered pair

    • For all objects x and y, there is a set {x,y}

    • {x,y} ≝ { βˆ€z | z = x ⋁ z = y }

  • powerset:

    • π“Ÿ(A) = { βˆ€S | S βŠ† A }

  • union: A βˆͺ B = { βˆ€x | x ∈ A ∨ x ∈ B }

  • intersection: A ∩ B = { βˆ€x | x ∈ A ∧ x ∈ B }

  • difference: A B = { βˆ€x | x ∈ A β†’ x βˆ‰ B }

  • difference: B A = { βˆ€x | x ∈ B β†’ x βˆ‰ A }

  • symmetrical difference:

    • all items in A or B that are not in their intersection

    • A β–³ B = (A βˆͺ B) (A ∩ B)

    • A β–³ B = (A B) βˆͺ (B A)

    • A β–³ B = { βˆ€xβˆ€y | (x ∈ A β†’ x βˆ‰ B) ∨ (y ∈ B β†’ y βˆ‰ A) }

𝓀 = {a,b,c,d,e} S = {a,b,c}, T = {b,c,d}

  • {a,b,c} βˆͺ {b,c,d} = {a,b,c,d}

  • {a,b,c} ∩ {b,c,d} = {b,c}

  • {a,b,c} {b,c,d} = {a}

  • {b,c,d} {a,b,c} = {d}

  • {a,b,c} β–³ {b,c,d} = {a,d}

  • {a,b,c}' = {d,e}

  • {b,c,d}' = {a,e}

Last updated