Enumeration: Rules of Inference for Intuitionistic Natural Deduction
Rules of Inference for Intuitionistic Natural Deduction
Conjunction
introduction, ∧I
elimination
left, ∧E₁
right, ∧E₂
Disjunction
introduction
left, ∨I₁
right, ∨I₂
elimination, ∨E
Implication
introduction, →I
elimination, →E (MP)
Negation
introduction, ¬I
elimination, ¬E
Truth
introduction, TI
Falsum
elimination, ⟘E
Universal quantification
introduction, ∀I
elimination, ∀E
Existential quantification
introduction, ∃I
elimination, ∃E
CONJUNCTION
A true B true A ∧ B true A ∧ B true
--------------- ∧I ---------- ∧E₁ ---------- ∧E₂
A ∧ B true A true B true
Introduction Elimination
DISJUNCTION
[A]ⁱ true [B]ʲ true
⫶ ⫶
A true B true A ∨ B true C true C true
---------- ∨I₁ ---------- ∨I₂ ---------------------------------- ∨Eᵢⱼ
A ∨ B true A ∨ B true C true
Introduction Elimination
IMPLICATION
[A]¹ true
⫶
B true A true A → B true
----------- →I¹ --------------------- →E (MP)
A → B true B true
Introduction Elimination
NEGATION
[A]¹ true
⫶
p true A true ¬A true
----------- ¬I¹ ------------------ ¬E (EFQ)
¬A true C true
Introduction Elimination
TRUTH FALSE
⟘ true
-------- ⟙I ------- ⟘E
⟙ true C true
TRUTH Introduction FALSE Elimination
UNIVERSAL QUANTIFICATION
[a/x]A true ∀x. A true
------------ ∀Iᵃ ------------ ∀E
∀x.A true [t/x]A true
Introduction Elimination
EXISTENTIAL QUANTIFICATION
[[a/x]A true]
⫶
[t/x]A true ∃x.A true C true
------------ ∃I ----------------------------- ∃Eᵃ
∃x.A true C true
Introduction Elimination
Last updated
Was this helpful?