Last updated 4 years ago
Was this helpful?
(!∃e, ∀x, ∃x−1∈A) . x⋆x−1=e=x−1⋆x(!\exists e, \ \forall x, \ \exists x^{-1}\in A)\ .\ x\star x^{-1} = e = x^{-1}\star x(!∃e, ∀x, ∃x−1∈A) . x⋆x−1=e=x−1⋆x