Logic Indices
Logical reasoning
Deduction
Induction
Abduction
Structural rules
Monotonicity of entailment, weakening
Idempotency of entailment, contraction
Exchange
The cut rule
De Morgan duality
Properties
Satisfiability
Validity
Soundness
Well-formedness
Compactness
Completeness
Consistency
Truth functional (operators)
Defeasibility
Substitution
Logical connectives
negation
conjunction
disjunction
implication
bicondition
Sheffer's stroke
Pierce's arrow
XOR
Principles
Law of identity,
ID, ∀x:x=xp∧⊤≡p, p∨⊥≡p
Law of non-contradiction,
NC: ¬(p∧¬p)Law of excluded middle,
EM, Tertium non datur,TND: p∨¬p⊤≡¬¬⊤≡¬⊥,⊥≡¬¬⊥≡¬⊤
Principle of explosion, Ex falso quodlibet,
EFQ∀p∀q:(p∧¬p)⊢q
Principles of bivalence: ⊤∨⊥, not both, not neither
Independence of premise, Kreisel–Putnam rule,
KPRNegation as failure,
NAF
Rules
Commutativity
Conjunction: p∧q⊢q∧p
Disjunction: p∨q⊢q∨p
Associativity
Conjunction: p∧(q∧r)⊢(p∧q)∧r
Disjunction: p∨(q∨r)⊢(p∨q)∨r
Distributivity:
p∧(q∨r)⊢(p∧q)∨(p∧r)
p∨(q∧r)⊢(p∨q)∧(p∨r)
Absorption: p→q⊢p→(p∧q)
De Morgan's laws
Negation of conjunction: ¬(p∧q)⊢(¬p∨¬q)
negation of disjunction: ¬(p∨q)⊢(¬p∧¬q)
Material implication: p→q≡¬p∨q (MI)
Idempotency
Domination laws: p∨⊤≡⊤, p∧⊥≡⊥
Negation laws
Double negation
Transposition
Material implication
Exportation
Tautology
Negation introduction
Inference
Derivability, derived rule
Admissibility, Admissible rule
Discharged assumption
Conditional proof assumption,
CPA
Inference rules
Negations
Negation
not-introduction, Reductio ad absurdum, p→q,p→¬q⊢¬p (¬i)
not-elimination, Noncontradiction, ¬p⊢p→r (¬e)
Double negation (depends on
EM)DN-introduction, p⊢¬¬p (¬¬i)
DN-elimination, ¬¬p⊢p (¬¬e)
De Morgan's laws
Negation of conjunction: ¬(p∧q)⊢(¬p∨¬q) (DM)
Negation of disjunction: ¬(p∨q)⊢(¬p∧¬q) (DM)
Conjunction
and-introduction, Adjunction: p,q⊢p∧q ∧i
and-elimination, Simplification: p∧q⊢p (∧e1) and p∧q⊢q (∧e2)
Commutativity: p∧q⊢q∧p
Associativity: p∧(q∧r)⊢(p∧q)
De Morgan's law: ¬p∧¬q⊢¬(p∨q) (DM)
Disjunction
or-introduction: p⊢p∨q (∨i)
or-elimination: p∨q,p→r,q→r⊢r (∨e)
Disjunctive syllogism,
DS: p∨q,¬q⊢p (DS)Commutativity: p∨q⊢q∨p
Associativity: p∨(q∨r)⊢(p∨q)
De Morgan's law: ¬p∨¬q⊢¬(p∧q) (DM)
Material implication: ¬p∨q⊢p→q (MI)
Implication
Modus ponens,
MP, p→q,p⊢q (MP)Modus tollens,
MT, p→q,¬q⊢¬p (MT)Material implication: p→q⊢¬p∨q (MI)
Hypothetical syllogism: p→q,q→r⊢p→r (HS)
Implication introduction in conditional proof:
(p⊢q)⊢p→q (→i)
Reflexivity: p⊢p→p
Absorption: p→q⊢p→(p→q)
Biconditional
iff-introduction: p→q,q→p⊢p↔q (↔i)
iff-elimination: p↔q⊢p→q,q→p (↔e)
Universal quantifier
∀-introduction, Generalization,
GEN∀-elimination
De Morgan's: ∀xP(x)≡¬(∃x¬P(x))
Existential quantifier
∃-introduction
∃-elimination
De Morgan's: ∃xP(x)≡¬(∀x¬P(x))
Reiteration, Copy,
CPYModus ponendo tollens,
MPTDeduction theorem
Constructive dilemma
Destructive dilemma
ID NC EM EFQ KPR NAF
MP MT
NOT AND OR TO IFF
NAND NOR XOR XNOR
Last updated