Truth tables

A truth function is a function whose domain and codomain is a Boolean set, 𝔹 = {true, false}. True and false are sometimes referred to as truth values.

That is, unary truth functions take a Boolean to a Boolean, 𝔹 -> 𝔹, while polyadic truth functions take an n-tuple of Booleans to a Boolean. In fact, all truth functions always return a single Boolean value.

taking a n-tuple of Booleans (truth values) and returns a single truth value, i.e. a single Boolean value (True or False). All truth function always return a single Boolean.

  • A unary truth function takes a Boolean (1 var)

    Bool -> Bool

  • A binary truth function takes a 2-tuple of Booleans (2 vars)

    (Bool, Bool) -> Bool

  • A binary truth function takes a 3-tuple of Booleans (3 vars)

    (Bool, Bool, Bool) -> Bool

and so on.

where:

  • v is number of varibles

  • c is number of configurations

  • f is number of truth functions

If we let single letters variables (e.g. p, q, r, s, t, etc.) stand for values of Boolean type (each one is either T or F), we see that

the number of truth functions is related to the number of variables, n, in this way: (2^2)^n, which is 4^n. One Boolean variable ranges over 2 values so there are 2^m possible configurations:

v is num of configurations: c = 2^v

v

c

f

arity

0

2

2

nullary

constants TRUE and FALSE, α -> 𝔹

1

2

4

unary

p: 𝔹 -> 𝔹

2

4

8

binary

⟨p: 𝔹, q: 𝔹⟩ -> 𝔹

3

8

64

ternary

⟨p: 𝔹, q: 𝔹, r: 𝔹⟩ -> 𝔹

4

16

256

quaternary

⟨p: 𝔹, q: 𝔹, r: 𝔹, s: 𝔹⟩ -> 𝔹

5

25

256

quinary

6

senary

7

septenary

8

octonary

9

novenary

10

denary

11

undenary

12

duodenary

12

tredenary

quaterdenary

An atomic logic variable, e.g. p, can have one of 2 possible values: it can either be true (T, 1) of false (F, 0). A truth function is an n-ary function from n variables to a truth value (T or F).

For any number n, there are 2^2^n possible n-ary truth functions.

One variable

¬ ∧ ∨ → ← ⇔

p p p ταυ ταυ ταυ p ¬p p∧p p∨p p→p p←p p⇔p 1 0 1 1 1 1 1 0 1 0 0 1 1 1

Two variables

← → ≡ ⇔ ⇒ ⊢

   |q←p|p←q|

p q

p→q

q→p

p→(p→q)

p→(q→p)

1 1

1

1

1

1

1 1 1

1 1 1

.

1 0

0

1

0

1

1 0 0

1 0 1

.

0 1

0

1

1

0

0 1 1

0 1 0

.

0 0

0

0

1

1

0 1 1

0 1 1

.

---

-

-

---

---

-------

-------

----------------------------------------------

c a 8 e b d

1000 8 1010 a 1100 c 1110 e

Three variables

─┬─┬─┬───┐0123456789abcdef │ │ │ ├───────────────────────────────────────────────────────────────────── n│4│3│ 2 │ ─├─┼─┼───┤ x│d│c│a b│F∧ ∨T ─┼─┼─┼───┼────────┬──────────────────────────────────────────────────────────── 0│0│0│0 0│00000000│11111111 1│0│0│0 1│00001111│00001111 2│0│0│1 0│00110011│00110011 3│0│0│1 1│01010101│01010101 ─┤ │ └───┼────────┴──────────────────────────────────────────────────────────── 4│0│1 0 0│ 5│0│1 0 1│ 6│0│1 1 0│ 7│0│1 1 1│ 8│1│0 0 0│ ─┤ └─────┼───────────────────────────────────────────────────────────────────── 9│1 0 0 1│ a│1 0 1 0│ b│1 0 1 1│ c│1 1 0 0│ d│1 1 0 1│ e│1 1 1 0│ f│1 1 1 1│ ─┴───────┴─────────────────────────────────────────────────────────────────────

Misc ternary formulas

(p -> q -> r) -> (p -> q) -> p -> r

p ⇒ (q --> r) ⟾ (p ⟶ q) ⇒ (p ⟶ r) 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 1 ≡ τ ≡

Last updated

Was this helpful?