_laws

Laws

https://web2.0calc.com/formulary/math/algebra/basic-identities

Axioms

AA and BB

AB={x:x∉X}\overline{A\cup B} \\ \varnothing = \{x:x\not\in X\}

Complement: AB\overline{A\cup B}

A∪(B∪C)=(A∪B)∪C, A∩(B∩C)=(A∩B)∩C A∪(B∩C)=(A∪B)∩(A∪C), A∩(B∪C)=(A∩B)∪(A∩C)

A={a,b,c,d} B={c,d,e,f} A ∪ B = {a,b,c,d,e,f} A ∩ B = {c,d} A - B = {a,b} ≠ B - A = {e,f} C(A)={}

op = ∪, ∩ set operartion

  • Commutativity: ABBAA\cup B \equiv B\cup A

  • Associativity, e.g. (AB)CA(BC)(A\cup B)\cup C \equiv A\cup (B\cup C)

  • Distributivity, e.g. A(BC)(AB)(AC)A \cup (B \cap C) \equiv (A \cup B) \cap (A\cup C)

  • Idempotency: A:AAA,AAA\forall A: A\cup A \equiv A, A\cap A \equiv A

  • Identity: A: A=A,A=,AU=U,AU=A\forall A:\ A\cup \varnothing = A, A\cap \varnothing = \varnothing, A\cup \mathcal{U}=\mathcal{U}, A\cap \mathcal{U}=A

  • Transitivity: (ABC)(AC)(A \le B \le C) \to (A \le C)

  • Involution: A:A¬¬A\forall A:A \equiv \lnot \lnot A

  • De Morgan's Law: supports in proving tautologies and contradiction.

Maths › Algebra › Basic Identities

Basic Identities

a,b,c,xR\forall a,b,c,x \in \mathbb{R}

  • Additive Identity: a+ϵ=aa + \epsilon = a

  • Additive Inverse: a+(a)=ϵ=0a + (-a) = \epsilon = 0

  • Associativity: (a+b)+c=a+(b+c)(a + b) + c = a + (b + c)

  • Commutativity: a+b=b+aa + b = b + a

  • Subtraction: ab=a+(b)a - b = a + (-b)

  • Multiplicative Identity: a1=aa * 1 = a

  • Multiplicative Inverse: a(1/a)=1(ifaisnot0)a * (1/a) = 1 (if a is not 0)

  • Multiplication times 0:a0=00: a * 0 = 0

  • Associative of Multiplication: (ab)c=a(bc)(a * b) * c = a * (b * c)

  • Commutative of Multiplication: ab=baa * b = b * a

  • Distributivity: a(b+c)=ab+aca(b + c) = ab + ac

  • Division: ab=a1b\frac{a}{b} = a \frac{1}{b}

Exponents

xaxb=xa+bxa/xb=xabax bx=abxax/bx=(a/b)x(xa)b=xab=(xb)a2k=2k1+2k1=22k1xa/b=xbax35 Logarithms Definition:x=logb(a)    bx=a(ifa,b>0andb1) Laws:log(ab)=log(a)+log(b)log(ab)=blog(a)log(a/b)=log(a)log(b)x^a * x^b = x^{a+b} \\ x^a / x^b = x^{a-b} \\ a^x \ b^x = {ab}^x \\ a^x / b^x = {(a/b)}^x \\ ({x^a})^b = x^{ab} = {(x^b)}^a \\ 2^{k} = 2^{k-1} + 2^{k-1} = 2 \cdot 2^{k-1} \\ x^{a / b} = \sqrt[b] {x}^{a} \\ \sqrt [3] {x}^{5} \\ \ \\ Logarithms \\ \ \\ Definition: x = logb( a ) \iff b^x = a (if a,b>0 and b ≠ 1) \\ \\ \ Laws: \\ log(a * b) = log(a) + log(b) \\ log( a^b ) = b * log(a) \\ log( a/b ) = log(a) - log(b)

Identities

  • xab=xab\Huge x^{\frac{a}{b}} = \sqrt[a] {x}^{b}

xa/b=xab\Huge x^{a/b} = \sqrt[a]x^b

Last updated