Magma
Magma is a basic kind of algebraic structure, consisting of a set equipped with a single binary operation which must be closed over the set.
A magma is a set M matched with an operation, •, that sends any two elements a,b ∈ M to another element, a • b ∈ M.
The symbol, •, is a general placeholder for a properly defined operation. To qualify as a magma, the set and operation (M, •) must satisfy the following requirement (known as the magma or closure axiom):
For all in , the result of the operation is also in ; in mathematical notation:
If is instead a partial operation, then is called a partial magma or more often a partial groupoid.
Last updated
Was this helpful?