Property: predicate that asserts a certain property.
Predicate P meaning "is-even" and ranging over the integers: ∀x ∈ ℤ. (x ÷ 2 = 0) -> E(x)
P
∀x ∈ ℤ. (x ÷ 2 = 0) -> E(x)
is, actually, a biconditional (iff) because the inverse also holds: ∀x ∈ ℤ. (x ÷ 2 = 0) <-> E(x)
∀x ∈ ℤ. (x ÷ 2 = 0) <-> E(x)
also, the first part, ∀x ∈ ℤ, is a shorthand for ∀x. x ∈ ℤ
∀x ∈ ℤ
∀x. x ∈ ℤ
shorthand ∀x ∈ S. P(x), expanded ∀x. x ∈ S -> P(x)
∀x ∈ S. P(x)
∀x. x ∈ S -> P(x)
shorthand ∃x ∈ S. P(x), expanded ∀x. x ∈ S ∧ P(x)
∃x ∈ S. P(x)
∀x. x ∈ S ∧ P(x)
Last updated 4 years ago