The empty set:
∃A [ ∀x (x∉A) ]\exists A\ [\ \forall x\ ( x \not\in A) \ ]∃A [ ∀x (x∈A) ]
Non-empty set:
∀A [ ∃x (x∈A) ]\forall A\ [\ \exists x\ ( x \in A) \ ]∀A [ ∃x (x∈A) ]
Subset:
∀a [ a∈A→a∈B ⟺ A⊆B ]\forall a\ [\ a \in A \to a \in B \iff A \subseteq B \ ]∀a [ a∈A→a∈B⟺A⊆B ]
Proper Subset:
∀a [ a∈A→ [ a∈B∧ (∃b . b∈B∧b∉A) ] ⟺ A⊂B ]\forall a\ [ \ a \in A \to \ [ \ a \in B \land \ (\exists b\ . \ b\in B \land b \not\in A) \ ] \ \iff A \subset B \ ]∀a [ a∈A→ [ a∈B∧ (∃b . b∈B∧b∈A) ] ⟺A⊂B ]
Equality
A⊆B∧B⊆A ⟺ A=BA \subseteq B \land B \subseteq A \iff A=BA⊆B∧B⊆A⟺A=B
Axiom of regularity (foundation) states that every non-empty set xxx contains a member yyy such that xxx and yyy are disjoint sets.
Last updated 4 years ago