🗄️
math-debrief
  • Math Debrief
  • Math: TIMELINE
  • 100-fundamentals
    • debrief-name: math section-code: 000 section-name: general section-desc: Elementary topics pervasive
      • About Mathematics
      • abstraction-in-math
      • About Math
      • Axiom schema
      • Basic concepts in math
      • Collections
      • Elementary concepts in objects
      • Elements of mathematics
      • math-as-a-language
      • Mathematical structures
      • List of mathematics-based methods
      • Mathematics and Reality
      • Mathematics: General
      • Controversial mathematics
      • the-elements-of-math
      • What is mathematics
    • The foundation of mathematics
      • Mathematical foundations
      • Foundations of Mathematics
      • Axiomatization of mathematics
      • Foundational crisis of mathematics
      • Foundations
      • Hilbert's problems
      • impl-of-math-in-set-theory
      • Gödel's Incompleteness Theorem
      • Theorems in the foundations of mathematics
      • The list of FOM candidates
      • Logicism
    • Philosophy of mathematics
      • Constructive mathematics
      • Constructive mathematics
      • Metamathematics
      • Philosophy of mathematics
      • Schools of mathematics
    • terms
      • Terms
      • Arithmetic
      • Axiom
      • The Axiomatic Method
      • discrete-math
      • 201 Discrete mathematics
      • Euclidean space
      • Formal system
      • Function
      • Generalization
      • Geometry
      • Higher-order
      • Impredicativity
      • Level of measurement
      • Mathematical definition
      • FAQ
      • Mathematical function
      • Mathematical induction
      • Mathematical object
      • Mathematical object
      • Equivalent definitions of mathematical structures
      • Mathematics
      • Mathematical model
      • mathematical-notation
      • Mathematical pages
      • Mathematical terminology
      • Mathematical adjective
      • Numbers
      • plane
      • Primer: Set Theory
      • Mathematical primitive
      • Set
      • Space
      • theory
      • Variable
  • 200 Set and Set theory
    • Sets: Hierarchy
    • set.TERMS
    • SETS › TOPICS
    • 201 Set concepts
      • Mathematical collections
      • The notion of sets
      • Specification of sets
    • Set cardinality
      • Cardinality of the continuum
      • Cardinality
      • Set Cardinality
      • cardinality2
      • Set cardinality
    • Set operations
      • Disjoint sets
      • Overlapping sets
      • Product
      • set-interactions
      • Set qualities
      • Set relations
    • Set properties
      • Basic set properties
      • Set properties
    • Set relations
      • Basic set relations
      • Disjoint sets
      • Inclusion relation
      • Membership Relation
      • Set membership
    • Summary
      • Set FAQ
      • Sets: Summary
    • Set theories
      • Axiomatic set theory
      • Set Theories
      • Naive Set Theory
      • Morse-Kelley set theory
      • von Neumann-Bernays-Gödel Set Theory
      • Quine's New Foundations (NF)
      • Cantor's set theory
      • Zermelo-Fraenkel set theory
    • Axioms of set theory
      • axiom-of-choice
      • The Axiom of Extensionality
      • Axiom of infinity
      • axiom-of-pairing
      • Axiom of powerset
      • Axiom of Regularity
      • Axiom of replacement
      • Axiom of union
      • Axiom of well-ordering
      • axiom-schema-of-comprehension
      • Axiom Schema of Specification
      • Axioms of set theories
      • List of axioms in set theory
      • ZFC Axioms
    • Sets: Terms
      • Bell Number
      • Cardinal number
      • Class (set theory)
      • Closure
      • empty-set
      • Extended set operations
      • Extensions by definitions
      • Family of sets
      • Fundamental sets
      • fundamental-sets2
      • Georg Cantor
      • History of set theory
      • Implementation of mathematics in set theory
      • Indexed family of sets
      • Extensional and intensional definitions
      • Involution
      • list-of-axioms-of-set-theory
      • Implementation of mathematics in set theory
      • Set membership
      • Naive Set Theory
      • Number of relations
      • empty-relation
      • Set Partitioning
      • Powerset
      • Russell's paradox
      • Set-builder notation
      • Set equivalence
      • Set Notation in latex
      • Set notation
      • Set partition
      • Intensional and extensional set specification
      • Set notation
      • Basic concepts in set theory
      • set-theory
      • Set Types
      • set
      • subset
      • Transfinite number
      • Tuples
      • ur-elements
  • Relations
    • basic-concepts
      • algebraic-axioms
      • Elements of a relation
      • Types of Relations
      • Named Relations
      • Relation theory
      • Relations
      • Types of relations
    • Relations
      • Definitions
      • Reflexivity
      • Symmetry
      • Transitivity
    • relation-properties
      • Uniqueness properties of relations
    • Types of relations
      • Transitivity
      • Binary Relation
      • Congruence relation
      • Connex relation
      • axioms-sets-zfc
      • Endorelation
      • Equivalence relation
      • Euclidean
      • Finitary relation
      • Heterogeneous relation
      • Homogeneous relation
      • Transitivity
      • Partial equivalence relation
      • Transitivity
      • Transitivity
      • Reflexive relation
      • Reflexivity
      • Index of relations
      • Serial relation
      • Symmetry
      • Transitivity
      • Ternary relation
      • Trichotomy
      • Universal relation
      • Well-foundedness
    • terms
      • Relations
      • Binary relation
      • Relations
      • _finitary-rel
      • Relations: Overview
      • Relations
      • Index of relations
      • Binary relations
      • Composition of relations
      • Equivalence class
      • Notation
      • Relation
      • Relations
      • Sets: Summary
      • Aggregation: Sets, Relations, Functions
  • Order theory
    • Order theory
    • List of order structures in mathematics
    • List of order theory topics
    • Order theory
      • Hasse diagram
      • Order theory
      • ordered-set
      • Partial order
      • Partially ordered set
      • Total order
  • Function Theory
    • Function Theory: GLOSSARY
    • Function Theory: HIERARCHY
    • Function Theory: LINKS
    • Function Theory: TERMS
    • Function Theory: TOPIC
    • Function Theory: WIKI
    • _articles
      • about-functions
      • Function
      • Formal definition
      • Definition
      • constant
      • Introduction
      • Types of functions
      • Functions: Summary of Notations
      • Functions: Overview
      • Properties of functions
      • Function properties
      • Functions: Summary
      • Function
    • Abjections
      • Bijective function
      • Function (abjections)
      • Injective function
      • Surjective function
    • topics
      • Function: TERMS
      • Codomain
      • Composition of functions
      • Currying
      • Division of functions
      • Domain
      • Function fixed points
      • Function cardinality
      • Function definition
      • Elements of a function
      • Function in mathematics
      • Function notion
      • Function operations
      • Function properties
      • Functional statements
      • Functions in programing languages
      • Image and Preimage
      • Image
      • Inverse function
      • Notion of functions
      • Number and types of functions between two sets
      • Operation
      • Range
      • Successor function
      • Time complexity classes
  • debrief-name: math section-code: 280 section-name: domain-theory section-desc:
    • Domain theory: LINKS
    • Domain theory
  • Logic
    • Logic: CHRONO TERMS
    • Logic: CLUSTERS
    • lo.GLOSSARY
    • Logic: Wiki links
    • 305-basic-concepts
      • Introduction to Logic
      • Argumentation
      • Logic: Basic terminology
      • Logic: Terminology
      • Truth function
      • Truth function
    • README
      • Mathematical Logic
      • Types of Logic
      • BHK interpretation
      • FOL
      • Index of Logic Forms
      • History of logic
      • Logic Indices
      • Interpretation of symbols in logic and math
      • logic-systems
      • Mathematical Logic: People and Events
      • Index of logical fallacies
      • Logical symbols
      • Mathematical conjecture
      • Mathematical induction
      • Mathematical lemma
      • Mathematical Logic
      • Mathematical proof
      • Mathematical theorem
      • Mathematical theory
      • Monotonicity of entailment
      • Satisfiability Modulo Theories
      • Sequent Calculus
      • Sequent
      • Tableaux
      • Truth tables
    • 360-propositional-logic
      • Propositional Logic
      • Propositional Logic
    • 370-predicate-logic
      • Predicate Logic
      • First-order logic
      • Predicate calculus
      • Examples of predicate formulae
    • 380-proof-theory
      • Argument-deduction-proof distinctions
      • Direct proof
      • Mathematical induction
      • Mathematical induction
      • Mathematical proof
      • Natural deduction
      • Natural deduction
      • Proof by induction
      • Proof by induction
      • proof-calculus
      • Proof Theory
      • Structural induction
      • System L
      • Proof theory
    • Logic: Indices
      • Gödel's Incompleteness Theorem
      • The History of Mathematical Logic
      • forallx
      • Logic for CS
      • Lectures in Logic and Set Theory
      • _logicomix
    • Logic
      • Logical connectives
      • Logical equivalence
    • Rules of Inference
      • WIKI
      • Conjunction elimination
      • Conjunction introduction
      • Cut rule
      • Disjunction elimination
      • Disjunction introduction
      • Disjunctive syllogism
      • Exportation
      • implication-elimination
      • implication-introduction
      • Rules of Inference: Index
      • Rules of inference
      • Rules of Inference for Natural Deduction
      • Logical Inference
      • Reiteration
      • Rule of inference
      • Structural rules
      • substitution
    • Logic
      • The principle of bivalence
      • The principle of explosion
      • The Law of Identity (ID)
      • Laws of thought
      • Properties of logic systems
      • List of laws in logic
      • The law of non-contradiction
    • Logic
      • Logic systems: LINKS
      • Logic system
      • logic-systems
      • logic-typ
      • logics-by-purpose
      • _logics
      • Affine logic
      • Algebraic logic
      • Bunched logic
      • Classical logic
      • Traditional first-order logic
      • Hoare logic
      • Linear logic
      • Modal logic
      • Non-monotonic logic
      • Syntax
      • Predicate logic
      • Propositional Logic
      • Relevance logic
      • Separation logic
      • Substructural logics
      • Syllogistic logic
    • Logic: Sections: Elementary
    • Logic: Topics
      • Pages in Logic
      • Logic ❱ Terms ❱ List
      • Logic ❱ Terms ❱ Definitions
      • Absoluteness
      • Assumption
      • Automated theorem proving
      • Canonical normal form
      • Categorical proposition
      • Classical linear logic
      • Consequence
      • Decidability
      • Deduction systems
      • deduction-theorem
      • Deductive reasoning
      • Diagonal lemma
      • Fallacy
      • Fitch notation
      • Formal language
      • formal-system
      • Formalism
      • Formula
      • functionally complete
      • Hilbert system
      • Hoare logic
      • horn-clause
      • Mathematical induction
      • Induction
      • Inductive Reasoning
      • Intuitionistic logic
      • Intuitionistic logic
      • Intuitionistic logic
      • Judgement
      • Judgments
      • Linear logic
      • Logic in computer science
      • Logic
      • Logical connective
      • Logical consequence
      • Logical constant
      • Logical form
      • axioms-sets
      • Logical reasoning
      • Ludics
      • Non-logical symbol
      • Predicate
      • Premise
      • Quantification
      • Realizability
      • Boolean satisfiability problem
      • DPLL algorithm
      • Satisfiability
      • Semantics of logic
      • Skolemization
      • SAT and SMT
      • Syntax
      • Tautology
      • Term
      • Unification
      • Validity
  • 510 Lambda Calculi
    • Lambda Calculus: GLOSSARY
    • Lambda calculi: LINKS
    • Lambda Calculus: OUTLINE
    • Lambda Calculus: Basic concepts
      • Introduction
      • Lambda expressions
      • Free variables
    • Lambda Calculi
      • Lambda calculus: LINKS
      • Lambda calculus combinators in Haskell
      • Lambda calculus: Combinators
      • Combinators
      • combos-all.js
      • combos-bird.js
      • combos-birds-list.js
      • combos-birds.js
      • Fixed-point combinator
      • Fixpoint operator
      • Lambda calculus: Fixpoint
    • combinatory-logic
      • algebraic-structures
      • Combinatory logic
      • Combinatory logic
      • relation-classification
      • 04-definition
    • Lambda calculus encoding schemes
      • bohm-berarducci-encoding
      • Index of Church encodings
      • Church encodings
      • Church Numerals
      • Encoding data structures
      • Encoding schemes in lambda calculi
      • Lambda encoding
      • Mogensen-Scott encoding
      • Parigot encoding
      • encodings
        • Encoding data structures
        • Encoding of Data Types in the λ-calculus
        • church-booleans
        • Church data structures
        • Church encoding
        • Church Numerals: Church encoding of natural numbers
        • Lambda Calculus: Church encoding
        • Lambda Calculus: Church encoding
        • church-numerals
        • Lambda Calculus: Church encoding: Numerals
        • Church pair
        • Pair
        • Lambda Calculus: Church encoding
        • Alternative encodings
        • Encoding schemes
        • Encoding schemes
        • Encodings in Untyped Lambda Calculus
        • Lambda calculus
        • Scott encoding
        • Lambda calculus: Scott encoding
    • lambda-calculus-evaluation
      • Call-by-name
      • Call-by-need
      • Call-by-value
    • lambda-calculus-forms
      • Beta normal form
      • Lambda terms
      • Fixity of lambda-terms
    • lambda-calculus-reductions
      • Alpha conversion
      • Beta reduction
      • Delta reduction
      • Eta conversion
      • Eta conversion
      • Lambda calculus: η-conversion
    • lambda-calculus
      • Alonzo Church
      • Inference rules for lambda calculus
      • Lambda Calculus: Introduction
      • Lambda abstraction
      • Lambda application
      • Lambda Calculus: Definition
      • About λ-calculus
      • Type inference
      • Lambda Calculus
      • Lambda Calculus: Introduction
      • Introduction to λ-calculus
      • Lambda calculus
      • Definition of Lambda Calculus
      • Functions in lambda calculus
      • History of Lambda Calculus
      • Using the Lambda Calculus
      • Name capturing
      • Variable occurrences
      • Variables
    • Lambda Calculus
      • Church-Rosser theorem
      • Curry's paradox
      • De Bruijn index
      • de Bruijn notation
      • Deductive lambda calculus
      • Kleene-Rosser paradox
      • Aspects of the lambda calculus
      • Function Refactoring
      • Lambda lifting
      • Let expression
      • Reduction strategy
      • Substitution
    • typed-lambda-calculi
      • Lambda Cube
      • Simply typed lambda calculus
      • System F
      • Typed lambda calculi
  • Type theory
    • Type Theory: GLOSSARY
    • Type theorists
    • Type Theory: SUMMARY
    • TERMS: Type Theory
      • Types
      • History of type theory
      • History of Type Theory
    • curry-howard-correspondence
      • The Curry-Howard Correspondence in Haskell
      • Curry-Howard correspondence
      • Curry-Howard correspondence
      • Curry-Howard correspondence
      • Curry-Howard-Lambek correspondence - HaskellWiki
    • dependent-types
      • Dependent type
      • Dependent type
    • Hindley-Milner type-system
      • Hindley-Milner type system
      • Monomorphism vs polymorphism
      • Let-polymorphism
      • The Hindley-Milner type system
      • Algorithm W in Haskell
      • Hindley-Milner Type Inference: W Algorithm
      • hindley–milner-type-system
      • Hindley-Milner type system
      • HM inference examples
      • HM in ML
      • Type Inference
    • Homotopy type theory
      • Homotopy type theory
      • Univalent Type theory as the foundations of mathematics
    • Intuitionistic type theory
      • Inductive definition
      • Inductive type
      • Intuitionistic type theory
    • Type Theory
      • TTTools
      • Coinduction
      • Impredicativity
      • Lean
      • Subsumption
    • Type Theory : Topics
      • Type Theory : Terms
      • Recursion types
      • Recursive data type
      • Subtyping
      • Type Class
      • Type Equivalence
      • Type Inference
      • Type rule
      • Type system
      • Variance
    • type-theories
      • Calculus of Constructions
      • Constructive type theory
      • ramified-type-theory
      • simple-type-theory
      • Substructural type systems
    • type-theory-general
      • Linear types
      • History of Type Theory
      • Type Theory
      • Overview
      • Type Theory
  • Abstract Algebra
    • 410-group-theory
      • Abelian group
    • algebras
      • Associative Algebra
      • Field
      • Group-like algebraic structures
      • group
      • Lattice
      • Magma
      • monoid
      • Overview of Algebras
      • Quasigroup
      • Rack and quandle
      • Ring
      • Semigroup
      • Algebra of sets
      • Setoid
    • boolean-algebra
      • Boolean algebra
      • Axioms in Boolean Algebra
      • Boolean algebra
      • Boolean Algebra Laws
      • Boolean Algebra Laws
      • Two-element Boolean algebra
      • Boolean algebra
      • Boolean domain
    • terms
      • Algebra
      • Axioms of abstract algebra
      • Algebraic notation for algebraic data types
      • Algebraic structure
      • Algebraic structure
      • Field of sets
      • Homomorphism
      • Isomorphism
      • Algebraic structures
      • Mathematical structure
      • Polynomials
      • Relation algebra
  • Category Theory
    • CT GLOSSARY
    • Category Theory: OUTLINE
    • CT SUMMARY
    • A First Introduction to Categories (2009)
      • Sets, maps, composition
      • 02-history
      • axioms-logic
      • Bijection of functions
      • Commutative diagram
      • Directed graph
      • CT prerequisites
      • String diagram
      • Transitive closure
    • Category Theory Fundamentals
      • Introduction
      • Interpretation
      • Fundamental concepts
      • Category theory
      • Category
      • Category Theory: Definitions
    • Key concepts
      • Duality
      • Functor
      • Homeset
      • Initial Object
      • Morphism
      • Natural transformation
      • Object
      • Terminal Object
    • Categorical constructions
      • Categorical constructions
      • Coproduct
      • Diagram
      • Product
      • Universal construction
    • Types of categories
      • Concrete category
      • Discrete category
      • Functor category
      • Groupoid
      • Hask
      • Kleisli category
      • Locally small category
      • Monoid
      • monoidal-categories.md
      • Index of named categories
      • Opposite category
      • Ordered category
      • Set category
      • Small category
      • Subcategory
    • Types of Functors
      • Adjoint functor
      • relation-arity
      • Endofunctor
      • Faithful functor
      • Forgetful functor
      • Hom functor
      • Identity functor
      • Inverse functor
      • Monad
      • Powerset functor
    • Types of Morphisms
      • Anamorphism
      • Automorphism
      • Catamorphism
      • Endomorphism
      • Epimorphism
      • Homomorphism
      • Hylomorphism
      • Idempotent morphism
      • Identity morphism
      • Inverse morphism
      • Isomorphism
      • Metamorphism
      • monomorphism
      • Natural isomorphism
      • Split morphism
    • 20-advanced-concepts
      • Coalgebra
      • (Co)Inductive types
      • Recursion Schemes
    • Category Theory
      • Category Theory: TERMS
      • Algebraic Data Types
      • Category Theory
      • Category
      • Coproduct
      • Function type
      • Functoriality
      • Initial Object
      • Limits and Colimits
      • Natural Transformation
      • 5. Products
      • Terminal Object
    • Category Theory :: Contents
      • CT :: Links
      • Category Theory :: Terms
      • Category :: Definition
      • F-Algebra
      • Functor
      • Initial object
      • Monoid
      • Natural Transformation
      • Number of morphisms
      • Terminal object
      • Transitive closure
      • Types of morphisms
      • Categories by cardinality
      • Types of functors
  • Number Theory
    • Invariance and Monovariance Principle
    • 615-arithmetic
      • Addition
      • Aliquot sum
      • Arithmetic function
      • Laws
      • Arithmetic operations
      • Index of arithmetic operations
      • Arithmetic operations
      • Arithmetic
      • Divisibility rules
      • Divisibility
      • division
      • Divisor Function
      • Divisor Summatory Function
      • Divisor
      • Euclidean division
      • Hyperoperations
      • hyperops
      • Modular arithmetic
      • Multiplication
      • Number Theory: primer in numbers
      • Percentage
      • Rules of Divisibility
      • Subtraction
    • The fundamental sets of numbers
      • Algebraic numbers
      • Complex numbers
      • Fractions
      • Fundamental number sets
      • Imaginary numbers
      • Integers
      • Irrational numbers
      • Natural number
      • Rational numbers
      • Real numbers
      • Transcendental numbers
      • Ulam's spiral
      • The whole numbers
    • COUNTING THEORY
      • Counting Theory
      • counting
      • Fundamental Counting Rules
    • 630-combinatorics
      • Combinatorics
      • Combinations
      • Combinatorics
      • Counting theory
      • Counting theory
      • Enumerative combinatorics
      • Partition
      • Pascals triangle
      • Permutations
      • Twelvefold way
    • Probability theory
      • Statistics › Probability theory: Glossary
      • Statistics › Probability theory › Topics
      • Statistics › Probability theory › Wiki Links
      • Conditional Probability
      • Distribution
      • Probability theory
      • Probability
    • Number theory
      • euclids-lemma
      • gcd-lcm
      • Induction
      • Infinity
      • Numbers and numerals with interesting properties
      • Lagrange's four-square theorem
      • Matrix
      • Matrix
      • List of Number Systems
      • Number Theory
      • Number Theory with Glenn Olsen
      • Number
      • Arithmetic
      • Numbers
      • numeral-prefixes
      • Numeral system
      • Numeral
      • Ordinal numbers
      • Parity
      • Peano axioms
      • Polynomial
      • Polynomial
      • Positional notation
      • Probability
      • Symbol
      • Well Ordering Principle
    • topics
      • Coprimality
      • Facorization of composite numbers
      • Fundamental Theorem of Arithmetic
      • Prime factorisation
      • Prime number
      • Prime numbers
  • Theory of computation
    • Theory of computation: Abbreviations
    • Theory of computation: CHRONOLOGICAL TOPICS
    • Theory of computation: GLOSSARY
    • Theory of Computation: HIERARCHY
    • Theory of computation: LINKS
    • Theory of computation: TERMS
    • Theory of computation: TOPICS
    • Theory of computation: WIKI
    • Theory of Computation
      • _toc-more
      • Theory of Computation
    • 610-automata-theory
      • Abstract machine
      • Automata Theory
      • Automaton
      • Edit distance
      • Finite-state Machine
      • Automata Theory: WIKI
    • Formal systems
      • Abstract interpretation
      • Alphabet
      • Binary combinatory logic
      • Chomsky hierarchy
      • Epsilon calculus
      • Formal language
      • Iota and Jot
      • Regular expression
      • Regular Language
      • SKI combinator calculus
    • 621-grammar
      • Backus-Naur Form (BNF)
      • Context-free grammar
      • Context-sensitive grammar
      • Extended Backus–Naur Form (EBNF)
      • Regular Language
      • Terminal and nonterminal symbols
    • 622-syntax
      • Syntax
    • 624-semantics
      • Axiomatic semantics
      • Denotational Semantics: Summary
      • Denotational Semantics
      • Denotational Semantics
      • Denotational semantics
      • Formal semantics
      • Operational semantics
      • Semantics in CS
      • Semantics
    • 630-computability-theory
      • Computability (recursion) theory: TERMS
      • Computability (recursion) theory: TOPICS
      • Effective Computability
      • Church Thesis
      • Church-Turing Thesis
      • Computability theory
      • Computability
      • Computable function
      • Entscheidungsproblem
      • Halting problem
      • Machine that always halts
      • McCarthy Formalism
      • Super-recursive algorithm
      • Recursion theory
    • 632-recursive-function-theory
      • Recursion Theory
      • Ackermann function
      • General recursive function
      • Minimization operator
      • Partial functions
      • Recursion Function Theory
      • Sudan function
    • 634-primitive-recursive-functions
      • Primitive Recursive Function
      • Initial functions
      • The list of primitive recursive functions
      • Primitive combination
      • Primitive composition
      • Primitive recursion
      • Successor function
    • 640-models-of-computation
      • Models of computation: Summaries
      • Model of computation
    • 680-complexity-theory
      • Algorithmic Complexity
      • Complexity Theory
  • debrief-name: math section-code: 900 section-name: aggregations section-desc: Aggregations, indices,
    • Index of closures
    • List of mathematical entities
    • List of mathematical objects
    • Enumeration of mathematical structures
    • Math : Axioms as Formulae
    • 950-math-areas
      • Areas of mathematics
      • Areas of mathematics
    • 970-links
      • check
      • Math: Links
      • Math Debrief: Links
      • Math Primer: LINKS
      • Links
      • Math: LINKS: ncatlab
      • Math: LINKS
      • WIKI
      • WIKI
      • WIKI_ALL
      • Math: Wiki lists
      • Glossary of areas of mathematics
      • WIKI_collections
      • Mathematics for Computer Science
      • Mathematics Classification
      • math
      • Resources
      • Math on YouTubel Video Playlists
      • wiki resources
    • 980-hierarchy
      • HIERAR
      • Math: Hierarchy
      • Math HIERARCHY
      • classification
        • Mathematics
        • https://ncatlab.org/nlab/all_pages https://ncatlab.org/nlab/all_pages/reference https://ncatlab.org/
        • Math Classification and Topical Pages
        • Areas of mathematics
        • Areas of mathematics
        • Math Classification: CCS
        • Math hierarchy
        • Computational mathematics
        • Taxonomy: Mathematics
        • Areas of mathematics
        • Mathematics Subject Classification
        • Math fields
        • math-topics
        • Mathematics Subject Classification – MSC
        • MSC Classification Codes
        • mss-top-levels-filenames
        • MSC classification: Top Levels
        • Math classification
    • 990-appendix
      • Math glossary at ENCYCLOPÆDIA BRITANNICA
      • Bibliography
      • Math: Abbreviations
      • math.GLOSSARY
    • Math : Canon
      • Main branches of mathematics
      • Enumeration: Math paradigms
      • enum-math-symbols
      • List of mathematical theories
      • enum-algebras
        • Group-like algebraic structures
        • Group
        • Groupoid
        • magma
        • Monoid
        • Semigroup
      • enum-axioms-indices
        • 03-variants
        • axioms-relations
        • disjoint-sets
        • ordered-pair
      • enum-axioms
        • Axiom of Extensionality
        • Axioms
          • List of Axioms
          • List of Axioms
          • LINKS
          • Index of axioms
          • Index of axioms
          • List of Axioms
          • List of Axioms in Relations
          • _laws
          • Index of axioms
          • Index of properties
          • Axioms in Boolean Algebra
          • Axioms for the Real Numbers and Integers
          • Axioms for the Real Numbers and Integers
          • ZF Axioms
          • ZFC Axioms
          • Axioms in logic
          • Axioms in set theory
          • List of axioms in set theory
        • Axioms
          • Absorption
          • Annihilation
          • Associativity
          • Cancellation
          • Closure
          • Commutativity
          • Complement laws
          • Distributivity
          • Domination
          • Idempotency
          • identity
          • Invertibility
          • involution
          • Linearity
          • Monotonicity
          • Well-definedness
          • Well-formedness
          • Well-foundedness
          • Well-ordering
      • enum-inference-rules
        • Enumeration: Rules of Inference
        • Enumeration: Rules of Inference for Intuitionistic Natural Deduction
      • Math › Logic formulae
        • Logic formulas concerning functions
        • Logic formulas concerning orders
        • Logic formulas concerning relations
        • Logic formulas concerning sets
      • enum-logic-system-elements
        • Conjecture
      • enum-logic-system-properties
        • Completeness
        • Consistency
        • Decidability
      • enum-topical-hierarchies
        • Outline of category theory
    • Mathematical Lists and Indices
      • Index of algebraic structures
      • Math equations and formulas
      • The fundamental number sets
      • index-of-math-elements
      • Arity
      • List of binary relations
      • Pretty formulae
      • Index of integer sequences
      • List of conjectures
      • Mathematical objects
      • Theorems
      • List of mathematical theories
      • list-of-unsolved-problems
      • Lists of problems in math
      • People
      • list-of-quotes-and-phrases
    • Mathematical elements
      • Mathematical (elements): PAGES
      • Mathematical abstraction
      • Mathematical analysis
      • Mathematical argumentation
      • Mathematical axiom
      • Mathematical concept
      • Mathematical constant
      • Mathematical deduction
      • Mathematical definition
      • Mathematical element
      • Mathematical expression
      • Mathematical formula
      • Mathematical method
      • Mathematical model
      • Mathematical notation
      • Mathematical object
      • Mathematical primitive
      • Mathematical reasoning
      • Mathematical statement
      • Mathematical structure
      • Mathematical symbol
      • Mathematical synthesis
  • debrief-name: math section-code: 800 section-name: misc section-desc: Misc and unclassified mathemat
    • 810-statistics
      • STATISTICS: HIERARCHY
      • STATISTICS: TERMS
      • Statistics › Topics
      • Statistics WIKI LINKS
      • Mathematical Concepts
      • Linear Regression
    • 888-calculus
      • Calculus
      • Math › Calculus › TERMS
Powered by GitBook
On this page
  • STLC Syntax
  • Base types
  • Term constants
  • Grammar
  • Typing rules
  • STLC typing rules
  • Closed terms
  • Type Order
  • Abstract syntax
  • Evaluation
  • Evaluation examples
  • Type System

Was this helpful?

  1. 510 Lambda Calculi
  2. typed-lambda-calculi

Simply typed lambda calculus

PreviousLambda CubeNextSystem F

Last updated 4 years ago

Was this helpful?

Simply Typed Lambda Calculus (STLC, λ→) is a typed interpretation of the λ-calculus (λ) with a single type constructor for functions denoted by ->.

λ→ was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical uses of the untyped λ, and it exhibits many desirable and interesting properties.

  • λ→ is the canonical and simplest example of a typed λ-calculus

  • λ→ is the smallest imaginable statically typed FPL

  • every term is explicitly typed and no type inference is performed

  • it has a much simpler structure than the typed λ at the basis of FPLs

  • there are only base types in λ→ and functions cannot be polymorphic

  • λ→ is strongly normalizing: evaluation terminates for any term, independent of the evaluation strategy

The term "simple type" is also used to refer to extensions of λ→, such as

  • products, coproducts, natural numbers in System T

  • full recursion in PCF

  • polymorphic types in System F

  • dependent types in Logical Framework (LF)

In contrast, systems which introduce polymorphic types (System F) or dependent types (LF) are not considered simply typed. The former, except full recursion, are still considered "simple" because the Church encodings of such structures can be done using only the type constructor for functions and suitable type variables, while polymorphism and dependency cannot. (Like elephant and tomato, which are both red, except for elephant, so are all four systems symply typed except the last three).

STLC Syntax

  • σ,τ range over types

  • function of type σ -> τ takes a σ and produces a τ

  • function type constructor associates to the right: σ → τ → υ = σ → (τ → υ)

Base types

B is the set of base types, also called atomic types or type constants.With the set of base types fixed, the syntax of types is:

τ := τ -> τ
   | T
   where T ∈ B (base types)

For example, B = {a,b} generates an infinite set of types, including a,b, a → a, a → b, b → a, b → b, a → a → a, etc.

Term constants

We also fix a set of term constants or literals for the base types.

For example, we might assume a base type Nat, and the term constants could be the conrete natural numbers.

Grammar

In the original presentation, Church used only two base types:

  • o for the type of propositions with no term constants

  • ι for the type of individuals with 1 term constant

The syntax of the STLC is essentially that of the λ itself. BNF term syntax:

𝓮 := 𝔁          variable
   | λ𝔁:τ.𝓮     abstraction
   | 𝓮𝓮         application
   | 𝓬          term constant
  • a var reference 𝔁 is bound if it is inside of an abstraction binding 𝔁

  • closed terms have no unbound vars

  • compared to the syntax of λ, the difference is that in λ→, params in the abstraction must be type-annotated, and term constants are allowed.

Typing rules

To define the set of well-typed terms of a given type, we define a typing relation between terms and types.

Typing contexts (typing environments), denoted with Γ, Δ, etc., are the sets of typing assumptions.

Typing assumption has the form x : τ and means the term x has type τ.

Typing relation, Γ |- x : τ, states that x is a term of type τ in the context Γ. In this case, x is said to be well-typed (having the type τ).

Typing judgements are instances of the typing relation.

Validity of typing judgements are shown by providing typing derivations, constructed using typing rules, where the premises above the inference line allow deriving of the conclusion below the inference line.

STLC typing rules

𝔁: σ ∈ Γ
------------ (1)                                    ---------- AS
Γ |- 𝔁: σ                                             σ |- σ


𝚌𝚘𝚗𝚜𝚝 𝓬: T
------------ (2)
Γ |- 𝓬: T


    Γ, 𝔁 : σ |- 𝓮 : τ                                Γ, σ |- τ
-------------------------- (3)                    ------------- →I
Γ |- (λ𝔁:σ. 𝓮): σ → τ                              Γ |- σ -> τ


Γ |- f:σ -> τ   Γ |- e:σ                    Γ |- σ → τ    Γ |- σ
-------------------------- (4)              --------------------- →E (MP)
      Γ |- f e : τ                                 Γ |- τ
  1. If x:σ belongs to the context Γ, then the context Γ allows us to conclude that fact, i.e. that x indeed has the type σ. This is a type assertion, similar to an assumption in the natural deduction.

  2. Term constant c has the type T, where T is some base type. This is another type-assertion, similar to making an assumption in ND.

  3. If the context Γ, extended with a type assertion that x:σ, allows us to conclude that e:τ, then we can conclude (λ𝔁: σ. 𝓮) : σ -> τ i.e. that the lambda abstraction λ𝔁: σ. 𝓮 has the type σ → τ.

This is similar to the inference rule for implication introduction from natural deduction: if we make an assumption σ and then proceed to make a conclusion τ, then we can discharge the assumption σ and introduce the implication σ → τ. Translated into STLC, introducing an assumption σ means introducing a lambda abstraction, λσ.(...), and discharging that assumption means completing the lambda abstaction's body, λσ. τ. Then we only need to add terms to translate it into STLC: (λ 𝔁 : σ . 𝓮) : σ → τ.

  1. If, in the context Γ, we have a function f: σ -> τ and the matching argument e:σ, then applying the function to the arg, f e, will produce some term of the function's return type τ.

This is also similar to the modus ponens rule: if, the context Γ, we have an implication σ -> τ and the formula σ, then we are allowed to conclude τ. Again, the difference is that STLC expresses this using terms and types, but ND expresses only formulas which are more similar to STLC's types than terms.

Closed terms

Closed terms are terms that are typable in the empty context, i.e. terms that have no free variables. Some examples are:

  • I: ∀τ. (λx:τ. x): τ → τ

  • K: ∀στ. (λx:σ. λy:τ. x): σ → τ → σ

  • S: ∀στω.(λf:σ → ω → τ. λg:σ → ω. λx:σ. f x (g x) : (σ→ω→τ) → (σ→ω) → σ → τ

-- I
id :: ∀ a . a -> a
id = \a -> a

const :: ∀ a b . a -> b -> a
const = \ a b -> a

s :: ∀ a b c. (a -> b -> c) -> (a -> b) -> a -> c
s = \ f g x -> f x (g x)

Type Order

Each type τ is assigned an order, a number 𝓞(τ)

  • for base types, 𝓞(τ) = 0

  • for function types, 𝓞(σ -> τ) = max(𝓞(σ)+1, 𝓞(τ))

The order of a type measures the depth of the most left-nested arrow.

  • 𝓞(σ -> σ -> σ) = 1 = 𝓞(σ -> (σ -> σ))

  • 𝓞((σ -> σ) -> σ) = 2

Abstract syntax

The type language of λ→ consists of two constructs:

  • there is a set of base types α

  • compound types τ → τ correspond to functions from τ to τ'

τ := α base type | τ → τ' function type

There are 4 kinds of terms:

  • terms with an explicit type annotation

  • variables

  • applications

  • lambda abstractions

e := e : τ annotated term | x variable | e e' application | λx → e lambda abstraction

Terms can be evaluated to values. A value is either:

  • neutral term (i.e. a var applied to a sequence, possibly empty, of values)

  • lambda abstraction

v := n neutral term | λx → v lambda abstraction

n := x variable | n v application

Evaluation

The (big-step) evaluation rules of λ→

  e ⇓ v
--------- (1)       ----- (2)
e : τ ⇓ v           x ⇓ x


e ⇓ λx -> v     v [x ⟼ e'] ⇓ e'
--------------------------------- (3)
          e e' ⇓ v'


e ⇓ n    e' ⇓ v'                 e ⇓ v
---------------- (4)       ----------------- (5)
   e e' ⇓ n v'             λx -> e ⇓ λx -> v

(1) The notation e ⇓ v means that the result of completely evaluating some expression e is a value v. Since STLC is a strongly normalizing language, the evaluation strategy is irrelevant.

To keep the presentation simple, we evaluate everything as far as possible, and even evaluate under lambda. Type annotations are ignored during evaluation.Variables evaluate to themselves (2).

In the case of application (3), it depends whether the left subterm evaluates to a neutral term or a lambda abstraction.

If a neutral term, the evaluation cannot proceed further and we construct a new neutral term from the results of evaluating the two subterms (4).

When the evaluation of the left subterm yields a lambda abstraction, we β-reduce. As this substitution may itself produce new redexes, we evaluate the result of the substitution (5).

Evaluation examples

Here are few example terms in λ→, and their evaluations. Let us write id to denote the term λx.x, and const to denote the term λxy.x, which is the sugar for λx.λy.x. Then,

(id    :: β → β) y                    ⇓ y
(const :: α → β → α) y x              ⇓ y
(const :: (β → β) → α → β → β) id y   ⇓ id

id           :: b -> b
const        :: a -> b -> a
const id     :: a -> b -> b
const id y   :: a -> a

Type System

Type rules are generally of the form Γ |- e::t, indicating that a term e has type t in context Γ. The context lists valid base types, and associates identifiers with type information. We write α :: * to indicate that α is a base type, and x::t to indicate that x is a term of type t.

Every free variable in both terms and types must occur in the context. For instance, if we want to declare const to be of type (β → β) → α → β → β, we need our context to contain at least:

  • α :: *

  • β :: *

  • const :: (β → β) → α → β → β

Note α and β are introduced before they are used in the type of const. These considerations motivate the definitions of contexts and their validity (basically, these state when a context is valid: when empty, when an empty context is extended with a new base type, with a new term to type binding, and so on).

Multiple bindings for the same variable (identifier) can occur in the same context, and then the rightmost binding takes precedence.

We write Γ(z) to denote the information associated with the identifier z by context Γ.

https://en.wikipedia.org/wiki/Simply_typed_lambda_calculus